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SUMMARY

The Kuwaiti Oil Fires (KOF) of 1991 provided an opportunity for the Defense

Nuclear Agency (DNA) to address some key questions about the atmospheric transport* of

particles that are relevant to the prediction of late-time dust cloud motion. During the fires,

much data were collected by numerous U.S. and foreign scientific agencies, and now the

critical issue is to assemble and organize a consistent set of measurements that can be

evaluated against computer models to predict small particle transport. These computer

models are required for the prediction of long-range transport of nuclear dust clouds and

for the prediction of smoke plumes from large oil, industrial, or urban fires that might

affect electro-optical sensor performance.

The KOF included features that were common with large forest fires, but the KOF

also had other characteristics that made them unique. When various long-range transport

codes were exercised for KOF-like problems, certain important deficiencies were

encountered. This raises the following questions: Are the mathematical and physical

models of the codes unsatisfactory? Are they being applied in situations for which they are

not intended?

A key requirement for predicting particle transport is the necessity to follow the

motion of some "tracer" particles (Lagrangian viewpoint). To be good tracers for modeling

purposes, the particles must remain physically and chemically inert during the transport

process. This condition of physical and chemical invariance can be termed a "frozen" or
"aged" state, and it will be reached when processes such as condensation and evaporation,

accretion of water vapor or other species, combustion and other chemical reactions, and

turbulent coagulation are no longer active. In this paper, we evaluate turbulent coagulation.
The other factors will be addressed in subsequent investigations.

The purpose of this paper is to make a preliminary assessment of the conditions

under which turbulent coagulation is or is not a significant factor. Clearly, if airborne

particles continue to coagulate or otherwise grow or shrink in appreciable amounts during
the transport phase, they cannot be unequivocally "tagged," and this potentially diminishes

In this report, transport means both advection and diffusion.
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the validity of a transport calculation. The importance of this investigation is that it defines

the nearest spatial region where turbulent coagulation can be neglected, so that suitable

comparisons can be made between transport prediction models and experimental data

(notwithstanding other aging processes).

Specific reasons for evaluating turbulent coagulation in the KOF are as follows:

Initial reported aerosol particle/mass densities are extremely high, leading to
large coagulation growth rates.

• In the large Canadian forest fire of 1950, it was found that turbulent
coagulation was an important consideration.

* Mass injection into the atmosphere is comparable to or exceeds that of large
forest fires.

There is a paucity of experimental data on turbulent coagulation in the
atmosphere, and it may be necessary to have a means of interpreting certain
KOF experimental data in this light

It is important to understand the dependence of turbulent coagulation on
windspeed (as it relates to transport time), turbulent kinetic energy dissipation
rate per unit mass, aerosol density and size distribution, and atmospheric
diffusion.

* The analytic representation of collection kernels for existing turbulent
coagulation theories is based on spherical particles, but this may not be valid
for KOF. Therefore, it is necessary to have a simple way of estimating the
changes in coagulation dynamics as a function of aerosol shape.

The approacb is to develop an analytical formulation of the spatial behavior of
aerosol density as the particles are carried along the turbulent wind field while
simultaneously undergoing coagulation. The KOF aerosol problem is one in which the
particle density of the "superplume" is formed by the merging of hundreds of individual
plumes. By example, Figure S-I shows three individual plumes merging into a super-
plume.

In this idealized figure, we hypothesize that there will be significant coagulation
effects as the flames emerge from each individual well since the particle density
(concentration) and mass density will be extremely high. As the individual plumes spread,
the concentration will decrease by geometric dilution caused by atmospheric turbulence and
coagulation. Ultimately, we postulate that the coagulation process becomes insignificant
when compared to other processes due to decreasing concentrations. The surfaces that
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define this transition are labeled "Coagulation Boundary." The shaded areas behind these
boundaries are the regions where coagulation is assumed to be insignificant.

Figure S1.ai Geomet~ric viepontfo €oaullncnidrtos
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Figure S-1. Geometric viewpoint for coagulation considerations.

The first step in understanding the behavior of aerosol concentration in the
superplumne is to evaluate the contributions from an individual fire. Figure S-2 shows the
mathematical model for a single plume. This model can be applied to an individual source
or to the large plume provided that the appropriate initial conditions are present.

AWq a AREA EXPRESSED AS
FUNCTION OF q

Ap U(q) * WIND SPEED EXPRESSED
AS FUNCTION OF q

Af N(q) a AEROSOL CONCENTRATION
EXPRESSED AS FUNCTION
OF q

Figure 9-2. Model for Individual plume.
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In Figure S-2, qo is the distance from the source (oil well) where the kinetic energy

of the ejected oil is no longer a factor in the transport process. A(qo) is the cross-sectional

area associated with qo. These dimensions are estimated from visual observations. From

turbulent diffusion models, we obtain the approximation A(q) = (const) q2 for q > qo.
Using A(q) in conjunction with mathematical simplification of the collection kernels for

turbulent shear coagulation and turbulent inertial coagulation and an approximation for the

shape of the aerosol radius distribution based on the large Canadian forest fire of 1950, we

have been able to derive an expression for the aerosol concentration, N(q), as a function of

the turbulent dissipation rate, average windspeed, and source emission rate. For the

conditions assumed in this study, turbulent inertial coagulation is nearly two orders of

magnitude more effective than turbulent shear coagulation.

The concentration, N(q), along the center line trajectory of Figure S-2, is given by

N(q) = NI(q) Fc(q) (S.1)

where

so
N1 (q) = U(q) A(q) (S.2)

is the ordinary geometric spreading and

c [-/ (t-1)] ; qqo (S.3)

is the part that is due to coagulation. In these equations, So is the particle emission rate,

U(q) is the windspeed along q, A(q) is the cross-sectional area of the plume, qo is the

starting point for the growth of the plume, and Ix is a characteristic length associated with

turbulent inertial coagulation. It is given by

5.3 RmrI

U2 (S.4)

where Rm is the mass emission rate, PA is the atmospheric mass density, rI is a

characteristic radius associated with the aerosol size shape distribution, rk is the

Kolmogorov time scale for turbulence, Xk is the Kolmogorov length scale for turbulence,

and U is the average windspeed.
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Figure S-3 shows the general behavior of rc as a function of q. The significant

features of this curve are the initial value of 1.0, the asymptotic behavior exp(-i//qo), and

the spatial variation, which behaves as exp(-i/q). Turbulent inertial coagulation will not

have an important effect on particle transport when this factor does not vary significantly

over the range of interest (i.e., the spatial region where theoretical models of particle

transport are to be compared with experimental observations).

L"
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Figure S-3. Generic behavior of rF as a function of q.

As shown in Figure S-3, the rate of spatial change of rc decreases as the distance,

q, increases. By establishing a practical criterion consistent with the prediction capabilities

of particle transport codes, it is possible to establish a minimum range, qmin, beyond which

the effects of coagulation on particle transport should not be a concern. The criterion is

rc(2qmn) > 0.9 , (S.5)

rc(qm.n)

and this inequality leads to the minimum range,

mi 5 I, (S.6)

in the domain of interest [where exp(-ld/qo) << 1]. qmin is the distance beyond which In Tc

changes by less than 10 percent over qmin.
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The important point is that qo and the factors comprising 11 can be determined from
remote and in-situ measurements taken during the fires. Using estimated numbers for the
conditions of the KOF, we find that 11 can range up to several kilometers and, in some

cases, can be as large as 10 kilometers. On the other hand, qo may only range up to a few
hundred meters. At this time, there remains a large number of unknown factors in the
computation of II. As the data reduction and analysis from the KOF continue, improved
estimates for II will become available, and we will be able to define more precisely the
regions where a self-consistent set of measurements can be used to validate particle
transport models.
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PREFACE

This paper, "Preliminary Assessment of the Importance of Turbulent Coagulation in
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toward improving our capability to predict the transport of pollutants arising from very

large natural and manmade fires.

The author has received constructive comments and support from numerous

individuals in the preparation of this paper. Thanks are due to Dr. Ernie Bauer (IDA) for

pointing out the importance of the fractal nature of aerosols produced in these fires and

the consequences of fractal considerations in coagulation; to Dr. Ed Townsley (IDA),

Dr. John Cockayne (SAIC), and LCDR Harris O'Bryant (DNA) for their critical review of

the equations and mathematical formalism; to Dr. Darrel Baumgardner (NCAR) for helpful

comments concerning coagulation processes and the related aerosol size distribution; to

Dr. Ian Sykes (ARAP) for pointing out the relationship between time averaging and plume

spreading; to Drs. Robert Oliver (IDA) and Tom Vonder Haar (METSAT) for their general

review; and to Dr. Ed Townsley and Mr. Peter Kysar (IDA) for their computational

support. In addition, the author would also like to thank Mrs. Sharon Y. Wiley for her

outstanding job of technical typing.
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CONVERSION TABLE

Conversion factors for U.S. customary to metric (SI) units of measurement

To Convert From To Multiply

angstrom meters (m) 1.000 000 X E-10

atmosphere (normal) kilo pascal (kPa) 1.013 25 X E+2

bar kilo pascal (kPa) 1.000 000 X E+2

barn meter2 (m2) 1.000 000 X E-28

British Thermal unit (thermochemical) joule (Q) 1.054 350 X E+3

calorie (thermochemical) joule (Q) 4.184 000

cal (thermochemical/cm 2  mega joule/M 2(MJ/m2 ) 4.184 000 X E-2

cure giga becquerel (GBq)" 3.700 000 X E+1

degree (angle) radian (rad) 1.745 329 X E-2

degree Fahrenheit degree kelvin (K) tx=(tof + 459.67)/1.8

electron volt joule (J) 1.602 19 X E-19

erg joule (J) 1.000 000 X E-7

ergi/second watt (W) 1.000 000 X E-7

foot meter (i) 3.048 000 X E-1

foot-Pound-force joule (J) 1.355818

gallon (U.S. liquid) meter3 (M3) 3.785 412 X E-3

inch meter (m) 2.540 000 X E-2

jerk joule (Q) 1.000 000 X E+9

joule/kilogrun (Q/Kg) (radiation dose
absorbed) Gray (Gy) 1.000000

kilotons terajoules 4.183

kip (1000 lbf) newton (N) 4.448 222 X E+3

kip/mch2 (ksi) kilo pascal (kPa) 6.694 757 X E+3

ktap newton-second/m2 (N--s/m 2) 1.000 000 X E+2

micron meter (M) 1.000 000 X E-6

mil meter (in) 2.540 000 X E-5

mile (international) meter (i) 1.609 344 X E+3

ounce kilogram (kg) 2.834 952 X E-2

pound-force (lbf avoirdupois) newton (N) 4.448 222

pound-force inch newton-meter (N-m) 1.129 848 X E-1

pound-force/inch newton/meter (N/m) 1.751 268 X E+2

pound-force/foot 2  kilo pascal (kPa) 4.788 026 X E-2

pound-force/inch2 (psi) kilo pascal (kPa) 6.894 757

pound-mass Obm avoirdupois) kilogram (kg) 4.535 924 X E-I

pound-inausa-foot2 (moment of inertia) kilogram-meter2 (kg.m2) 4.214 011 X E-2

pound-mass/foot' kilogram/meter' (kg/m3) 1.601 846 X E+ 1

rad (radiation dose absorbed) Gray (Gy)*" 1.000 000 X E-2

roentgen coulomb/kilogram (C/kg) 2.579 760 X E-4
shake second (s) 1.000 000 X E-8

slug kilogram (kg) 1.459 390 X E+ 1

torr (ram Hg, 0C) kilo pascal (kPa) 1.333 22 X E-1

The becquerel (Bq) is the S1 unit of radioactivity; Bp = 1 event/s.

"*The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

This paper is part of an IDA Task about the "Characterization of Data and

Utilization of Advanced Technologies for Predicting the Atmospheric Transport of

Effluents from the Kuwaiti Oil Field Fires," being performed for the Defense Nuclear

Agency (DNA). The Kuwaiti Oil Fires (KOF) of 1991 provided an opportunity for DNA

to address some key questions about the atmospheric transport of particles that are relevant

to the prediction of late-time dust and smoke cloud motion. During the fires, much data

were collected by numerous U.S. and foreign scientific agencies, and now the critical issue

is to assemble and organize a consistent set of measurements that can be evaluated against

computer codes to predict small particle transport. These computer codes are required for

the prediction of long-range transport of nuclear dust clouds and for the prediction of

smoke plumes from large oil, industrial, or urban fires that might affect electro-optical

sensor performance.

The KOF included features that were common with large forest fires, but the KOF

also had other characteristics that made them unique. Bauer (Ref. 1) has provided an initial

assessment of the characterization of the KOF in relation to various kinds of large fires and

has identified certain key aspects that should be studied further. However, the reviewers of

his document pointed out that when various long-range transport codes were exercised on

KOF-like problems, the agreement was often not very good. This raises the following

questions: Are the mathematical and physical models of the codes unsatisfactory? Are they

being applied in situations for which they are not intended?

A key requirement for predicting particle transport is the necessity to follow the

motion of some "tracer" particles (Lagrangian viewpoint). To be good tracers, the particles

must remain physically and chemically inert during the transport process. This condition of

physical and chemical invariance can be termed a "frozen" or "aged" state and applies to

those particles sufficiently far away from the sources of the plume. Some of the processes

that should be evaluated to ensure that transport calculations for the frozen state are

performed properly include condensation and evaporation, accretion of water vapor or

other species, combustion and other chemical reactions, Brownian coagulation, coagulation

1



in laminar shear flow, gravitational coagulation, turbulent shear coagulation, and turbulent
inertial coagulation. Baumgardner (Ref. 2) has also suggested that turbulent mixing may
have an effect on aerosol growth under certain circumstances. However, since all of these
processes are most active during the initial stages of mass injection into the atmosphere and

simple transport codes cannot be applied to a very young plume in which the tracer particles
are not yet "aged," it is important to establish a minimum range to which a transport code
can be applied for particles whose mass no longer changes with distance traveled.

In this paper, we make an initial assessment of the effects of turbulent shear
coagulation and turbulent inertial coagulation on aerosol growth in the KOF. The results
from this analysis may be useful in defining the "aged" regions that are applicable for
particle transport analysis. Specific reasons for evaluating these turbulent coagulation
processes in the KOF are as follows:

"* Initial reported aerosol particle/mass densities are extremely high, leading to
large coagulation growth rates.

"* In the Canadian fire of 1950, turbulent coagulation was an important
consideration (see Sections 2 and 3).

"* Mass ejection is comparable to or exceeds that of large forest fires.

"* There is a paucity of experimental data on turbulent coagulation in the
atmosphere, and it may be necessary to have a means of interpreting certain
KOF experimental data in this light.

It is important to understand the dependence of turbulent coagulation on wind-
speed (as it relates to transport time), turbulent kinetic energy dissipation rate
per unit mass, aerosol density and size distribution, and atmospheric diffusion.

The analytic representation of collection kernels for existing turbulent
coagulation theories is based on spherical particles. While this may not be
valid for KOF, it is necessary to have a simple way of estimating the changes
in coagulation dynamics as a function of aerosol shape.

For mathematical simplicity, nearly all analyses involving the transport of particles
from large fires have assumed that these particles have a spherical shape. Since a sphere
has the smallest surface-to-volume (mass) ratio, these models usually place a lower bound

on the reaction rate per mass unit. However, unlike a forest fire, in which roughly half of
the condensed smoke particles are liquid and can be described a spheres, an oil fire presents

a particular problem since most of the pure soot particles are long strands of solid carbon or
more complex molecules and cannot really be described as spheres.
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Evans et al. (Ref. 3) have examined the particle size and shape distribution for oil
fires without interference from brine, water, nebulized tar, or dusty ambient aerosols and
have shown that these smoke particles are an agglomeration of individual spherules that
exhibit a strand-like behavior. A sample of their results is shown in Figure 1-1, which
indicates that large numbers of strand-like particles may have existed in the many plumes
from the KOF. This particle configuration would have an important effect on the time scale
for kinetic processes and chemical reactions.

''

h-° . * 6

Figure 1-1. Electron micrograph of a smoke particle from a 1.0 m diameter
murban crude oil fire (Source: Ref. 3).

In recent years, more attention has been paid to the fractal description of the
irregular structures shown in Figure 1-1 and on the effects of such irregularities on free
molecular agglomeration (Ref. 4). However, for the purposes of this study, we will
assume a spherical shape for all particles and apply a correction factor when more accurate
analysis becomes available.
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It should be emphasized that the selection of the turbulent coagulation processes as
the first of the aging processes to be considered does not imply that the others have been
deemed to be less important. Indeed, we plan to address the other aging processes in a
subsequent publication in which we will make use of the mathematical formalism
established in this study.

In Section 2 of this paper, we evaluate the dependence of turbulent shear
coagulation and turbulent inertial coagulation on aerosol concentration and mass density,
size distribution, and turbulence parameters. These considerations are then applied to the
KOF in Section 3, in which the effects of windspeed, atmosphere turbulence, and aerosol
emission rate are taken into account. Concluding remarks are rendered in Section 4.

4



SECTION 2

TURBULENT COAGULATION PROCESSES

Because the conditions of the KOF have not been encountered before, we have a

limited data base for predicting the spatial regions and conditions for which turbulent

coagulation may be importanL It is also unlikely that simple transport codes will be valid

for this type of assessmenL One of the reasons for examining the significance of turbulent

coagulation in the KOF is that the initial reported particle concentrations are extremely high.

For example, Hobbs and Radke (Ref. 5) report particle concentrations frequently exceeding

105 cm- 3 within a few kilometers from the fires and mass concentrations of the composite

plume -840 jig m-3 at 20 km downwind for particles <3.5 jni in diameter. Johnson et al.

(Ref. 6) report mass densities between 500-1000 jg mi-3 at distances greater than 200 km.

These observations suggest that coagulation processes could be important over a significant

spatial region. In this section and in Section 3, we examine this conjecture.

Recently, Porch (Ref. 7) has examined the impact of turbulent coagulation on the

size distribution of aerosols produced by large fires in an attempt to understand the

phenomenon of Blue Moons. Porch used models where initial mass concentrations

for spherical smoke particles with radii less than 1 jim, ranged from 5 x 10-9 to

5 x 10-8 g cm- 3 (or equivalently 5000 to 50,000 jig m-3 ). These estimates appear to

apply over the fire itself, represented in Porch's model by a diameter of 400 km. In an

earlier study, Porch, Penner, and Gillette (Ref. 8) conducted a numerical study of the

effects of super-jIm particles on the coagulation loss of submicron particles. The results of

these studies have shown that for particles with radii less than 0.1 jri Brownian
coaoulation is more rapid than turbulent coagulation, while the latter mechanism generally

dominates for particle sizes of a few microns (Ref. 9).

The basic model for turbulent coagulation was developed by Saffman and Turner

(Ref. 10), who identified the two distinct coagulation mechanisms: turbulent shear

coagulation and turbulent inertial coagulation. Pruppacher and Klett (Ref. 9) have

succinctly summarized the salient features of turbulent coagulation. The first significant

feature is that turbulent coagulation applies to those aerosols of radius r << Ai where kk is

the "Kolmogorov microscale length" (Refs. 9, 10). As shown in Table 2-1, this is

5



satisfied for the conditions of KOF, in which virtually all of the aerosol particles have

dimensions less than the indicated values of )k.

Table 2-1. Kolmogorov microscales as a function of
energy dissipation rate, e.

(cintra) __ __ __ __ __ __ _

_______-43) (cM) (s) Comment

5 1.8 x 10-I 1.9 x 10-1 Applicable to stratiform clouds where there is
small mean velocity (Ref. 10)

100 8.4 x 10-2  4.1 x 10-2 Cloudy air (Ref. 9)

1000 4.8 x 10-2 1.3 x 10-2 Relevant for conditions in turbulent cumulus
clouds (Ref. 10)

2000 4.0 x 10-2 9.3 x 10-3 Relevant to early stages of the plume in large
fires (Ref. 7)

8000 2.8 x 10-2 4.6 x 10-3 Exceptional case of turbulent shear in high

turbulence (Ref. 8)

Coagulation results from the velocity motion between particles. One method of

achieving relative motion is through significant small-scale velocity gradients in turbulent

flow. For the length scale of velocity gradients that are smaller than Xk, the coagulation
process is similar to that of the laminar shear flow case considered by Smoluchowski and

described in Pruppacher and Klett (Ref. 9). If ml, m2 are the masses of the coagulating

particles, and rl and r2 are their respective radii, and p is the material intrinsic density

(assumed the same for both/all particles), and

m =- pr3 ,(2.1)

then the collection kernel for turbulent shear coagulation is given by (Refs. 9, 10):

3 -1 3 -1
KS(ml im2 )= l.3(rI + r2 ) ' k cm s (2.2)

where ij is the "Kolmogorov time scale" (Refs. 9, 10).

Another method for producing a relative particle velocity is due to local turbulent

accelerations. Particles of different mass respond differently to these accelerations by

having different viscous relaxation times associated with velocity equilibration. This leads

to the following expression for the collection kernel for turbulent inertial coagulation.:

6



2n p 22 r Ir I - 1  m3 s-
K1(m V In2 ) 27 PA (r1 + r2 ) -1 2 k ' cm k (2.3)

In this equation, PA is the air mass density, and Xk and rk are the Kolmogorov

microscales for length and time, which are given by

1/4

"xk( ) cmf (2.4)

1\/2 
(25

Tk (25

where r is the dissipation rate of kinetic energy per unit mass (cm2 s-3) and v is the kinetic

viscosity of air (cm 2 s-1). For the altitude range used in our study, we take the U.S.

Standard Atmosphere values of PA = 10-3 g cm- 3 and v = 0.172 cm2 s-1.

As observed in Equations (2.4) and (2.5), the dissipation rate is a key parameter.

Table 2-1 gives values of Ik and rk for selected values of e. Examination of this table

shows that values of e ranging from 2000 to 8000 cm2 s-3 are being considered in this

study.

Some of the important mathematical and physical characteristics of the coagulation
process can be presented best by considering the time behavior of the aerosol distribution in

a spatially uniform medium. We let f(m, t) dm be the number of particles per unit volume

lying in the mass range between m and m + dm, where f(m, t) is defined as the mass

density function (MDF). Using K(ml, m2) as the general description for either of the

collection kernels [Equation (2.2) or (2.3)] gives the following equation for the time

evolution of f(m, t):

aM I 1 K( m In8( I I din din2S JI 2M iKm m2 ) f(m1 ) f(m 2 ) 1(m -m- 2 )

- f(m) f K(m, m2 ) f(m2 ) dm 2  (2.6)
m2

The first term in Equation (2.6) is the growth term. The "1/2" appearing in front of

the integral is due to the fact that there is a reduction of one particle when two particles

coagulate. Inclusion of the Delta function 8(m - ml- m2) selects from all collisions only

those in which the mass, m, equals ml + m2. It is possible to integrate the growth term
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over either of the dummy variables mi or m2 in Equation (2.6) and simplify the integral to

the more familiar form (Ref. 7),

f f K(ml, m2 ) f(m)f(m2 ) 8(mdm- m,2 )din 1 m
mIm 2

f •"K( -m2 ,m 2 )f(m -m 2 ) f(m2 ) dm2 , (2.7)

0

which is obtained by integration over ml. The second term in Equation (2.6) is the loss

due to coagulation and is the integration over all possible events.

A further condition that is not explicitly represented in the expressions for KS and
KI is the existence of an efficiency factor associated with coagulation. For usual turbulent

clouds, Saffman and Turner (Ref. 10) suggest that the probability of coagulation may be

close to unity when particles are about the same size but diminishes rapidly for particles of

very different size. The coagulation efficiency of the KOF is not clear since the particles

are not water droplets. The issue of collection efficiency is difficult to address in this

preliminary assessment, particularly since many of the KOF particles may not be spherical.
Hence, for the present we will not include this consideration in our model.

For this study, we assume an efficiency of unity for all colliding particles. We also

assume that all particles are spherical since the collection kernels have only been modeled

for this case. A preliminary estimate of the collection efficiency for nonspherical particles
suggests that it would be greater than that for spherical particles of the same mass.

A more precise evaluation of the collection kernel(s) could perhaps be obtained by
extending the Saffman and Turner (Ref. 10) analysis to more realistic shapes. However,
until such an analysis becomes available, we will use the spherical models. At the end of
the analysis, it is possible to apply a correction factor to account for enhancement in the

coagulation process. Although we do not explicitly include this correction factor in this

analysis,1 it is used in the discussion of results.

Actually, the combined effect of collisions and the probability of particles sticking together after the
collision are both important. On one hand, the use of spherical aerosols appears to underestimate the
collection kernel; however, this is counterbalanced in our model by assuming that the particles stick
together in every collision. If estimates of the relevance of turbulent coagulation in KOF turn out to
be important in long-range transport prediction, it may be necessary to examine these issues further.

8



Using Equation (2.6), we can make certain observations about the coagulation

dynamics to obtain an estimate of the relevant time constants as a function of particle

density and dissipation rate. We first note that the mass density, M, where

M = f mf(m) dm, (2.8)

remains invariant We can demonstrate this by multiplying both sides of Equation (2.6) by

m and then integrating over all rass space. Thus, we have

"a = I f fK(m. mi2 ) (m+m 2 ) dm dm2
mI m2

- f fJmK(m, m2 ) dm dm2  (2.9)
mI m2

The first term in Equation (2.9) was obtained through the integration

n 8(m - m1 - m2) din. Since K(ml, m2) and K(m, m2) are symmetric kernels, the right-

hand side of Equation (2.9) equals zero and thus

am 0 (2.10)

as expected.

The total number of particles per cm3 is defined as

N(t) = f f(m,t) dm (2.11)

and is determined from Equation (2.6) by integration over mass space. We obtain

"f= f K(m,'m2)f(m )f(m2)dm, dm2

m1m2

- f JK(mlm 2 )f(ml)f(m2 )dmI dm2
mI m2

-f- f K(mlim2 )f(m,) f(m2 ) dmdM2  (2.12)
m1 2

Improved insight into the kinetics of coagulation is gained by introducing a

normalized mass density function (NMDF), ý(m, t), through the equation

9



f(m, t) = N(t)* (m, t) . (2.13)

From Equation (2.11), we deduce the required normalization condition

J 0(m, t) dm= 1 . (2.14)

By introducing 0(m, t), we can cast the analysis in terms of those issues that are

attributed solely to the total aerosol concentration, N(t), and those issues that are due to the

distribution in mass as given by 0(m, t). Substituting Equation (2.13) into Equation (2.12)

gives

i)N - 1 N 2 ,~ t)(2.15)

where

1t)O = jf f K(m1 . in2 ) 0(m1. t) (m2, t) dm Idm2 .(2.16)

For the special situation in which the collection kernel is assumed to be mass-
independent, that is, K(m1, m2) = Ko, a constant, the result is

•Nl1N 2 K
a - -2 K. (2.17)

The solution to Equation (2.17) is

N.
N(t) -- I 2.8

1 + (NKot)/2 (2.18)

where Ni is the initial concentration.

We will now make an estimate of T1(t) using the analytical forms of KS(ml, m2)
and Kl(m1, m2) from Equations (2.2) and (2.3) in combination with certain experimental
results of Radke et al. (Ref. 11) and as reported by Porch (Ref. 7), which lead to an
assessment of 0(m, t). Because KS and KI are easier to work with in terms of aerosol
radius instead of mass, it is convenient in computing 11(t) to express the mass distribution
in terms of the aerosol radius distribution. Introducing a normalized particle radius
function (NPRF), g(r, t), and applying the transformation law for probability frequency
functions gives

O(m) dm= g(r) dr , (2.19)

10



where m and r are related by Equation (2.1). As seen in Equation (2.19), a knowledge of
either * or g determines the other by differentiating Equation (2.1).

For the turbulent shear coagulation model, the expansion of (ri + r2) 3 in

Equation (2.2) gives
KS =(1.3) %k (r I + r2) 3

=(1.3),r- (r3 + 3r r2 +3r r2 + r3) (2.20)

Substituting Equation (2.20) into Equation (2.16) and using the property that KS is

symmetric in rl and r2 yields

Il(t) = 1. 3 T-k1 3 J2 y6~

=2.6,T'r(1+3r7f/r3) ,(2.21)

k

where

= J r3 g(r,t)dr= 3- p-1 f m0(m,t)dm = 4-ip-i , (2.22)

Sf r g(r, t) dr , (2.23)

= f r g(r, t) dr , (2.24)

and

S= f mr (m, t) dm (2.25)

H is the average mass of all particles as can be seen from the definition

fm f(m, t) dm M =

rn = N(t) , ) (2.26)

Let us temporarily assume that 3 r2 / r3 is much less than unity [we will partially
substantiate this assumption using Radke's data (Ref. 11)]. Then TIs(t) is approximately

given by
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-1 3 p-1 --
1ls(t) = 2 6 k m (2.27)

Substituting Equation (2.27) into Equation (2.15) givesaN 0.31,ct 03k P (N m--) N (2.28)

On the other hand, since the total mass density, M = N', remains constant during
the coagulation process, turbulent shear coagulation can be approximated by the simple
equation

aN N
(2.29)

& _ S

where
3.2 '[k p

TS= 32 (2.30)
S M

The smallest values of TS correspond to small values of Tk (high levels of turbulence) and
large values of M. Using M = 5 x 10-8 g cm- 3 , p = 1.0 g cm- 3, and Tk = 4.6 x 10-3 s
(corresponding to e = 8000 cm2 s-3) gives an e-folding time of

TS = 2.9x105 s = 81hr , (2.31)

which appears quite long when compared to the time scales of interest in the KOF.

Let us now return to evaluating the term

3 r7 Flr =A , (2.32)

which first appeared in Equation (2.21) and was subsequently neglected in the derivation of
Equation (2.28). A may be considered a "correction factor" and in the approximation of
Equation (2.27) has been neglected. However, as shown in Equations (2.22) to (2.24),

each of the entities, j, rý, and r3 , involved in the computation of A is time dependent since
g(r, t) changes with time. Essentially, A(t) cannot be determined exactly without solving
the problem exactly. However, it is interesting to explore the conditions under which A is
negligible and under which it is greater than unity, the latter condition requiring modifi-
cation of Equation (2.28).

An estimate of A can be obtained using measurements of what Radke (Ref. 11)
calls the Number Size Distribution. In his notation, this quantity is labeled "dN/dR" (see

12



Figure 2-1) and is defined as the number of particles per unit radius per unit volume. In

our formalism, we express this quantity as N g(r) and have
dNd - N g(r) (2.33)

101" 4cr

"Radke measurement

1012 .

ir-3

cc logna on

104

from Parch (Ret. 7)

1062 . ......... I .. Or V. 0 .

10-6 I- 7 10" 10-6  1e- 10.- 10-2 1-I

Particle ramU (cm)

Figure 2-1. Number size distribution of particles observed
in a forest slash fire (Source: Ref. 11).

The solid line in Figure 2-1 is dN/dR at the beginning phases of a forest slash fire.

The dashed line in this figure is an approximation of dN/dR, which is necessary for the

approximate analytical assessment used in our study. The approximation of Figure 2-1
applies in the radius range extending from a lower limit of 2 x 1O-6 cm to an upper limit of

2 x 10-2 cm and describes a distribution that varies as r-3.

We should emphasize that the Number Size Disiribufion of Figure 2-1 is taken at an

instant of time. However, during the coagulation process, g(r, t) will change with time as
the size distribution shifts to larger particles (Ref. 7). In addition, the g(r) of this figure

applies to a forest slash fire and would likely be different from the g(r) of the KOF.

Nevertheless, the use of g(r) from Figure 2-1 provides a mathematical basis for examining

13



the importance of the radial shape function on coagulation dynamics, and, therefore, we

assume that g(r) for the KOF is similar to the result for Figure 2-1.

The sensitivity of the results to the analytic representation of the aerosol distribution

can be explained by proposing that g(r) for the KOF varies as r-S between a lower limit, rL,

and an upper limit, ru. This form of the approximation for g(r) is chosen because of its

mathematical simplicity and because it is representative of aerosol size distributions found

in nature before the onset of significant aging caused by coagulation. For this case, we

have

g(r) = A r-s ,0 (2.34)

where A is the normalization constant determined from the requirement that J g(r) dr = 1.

Applying the normalization condition gives 0

A = (s-I)rSj I -(rL/rU) 1 ) (2.35)

From Figure 2-1, we have rL = 2 x 10-6 cm and rU = 2 x 10-2 cm. The ratio rt/rU equals

10-4 and is therefore negligible. In this case, we have the approximation

A = (s- 1) r-' L(2.36)

For expediency, we also assume that Equation (2.36) applies for the KOF,

although this assumption can readily be modified using actual data. Lastly, it should be

stated that Equation (2.34) implies a time-invariant size distribution, which is clearly not

the case. Despite this limitation, Equation (2.34) provides a basis for understanding the

important features of the size distribution in regard to the coagulation process.

Equation (2.34) readily furnishes the expression for the nth moment:

r_ =Jrng(r)dr_= r (Qn+1-s 1 )
rL '=n+l-sJ 

(2.37)

where

Q = (ru/rL) (2.38)

The moments r, r2, and r3 are readily computed from Equation (2.37). Inserting the

resulting expressions into Equation (2.32) gives
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A -(2-_s)(3-s) ( (Q4S 1) (2.39)

We now examine the dependence of A on s in the range where Q >> 1. These

results are shown in Table 2-2 and are obtained by taking the limit of Equation (2.39) for

Q = r/rL >> 1. This is the range of interest for forest fires but also appears to be the range

of interest for KOF, based on preliminary data obtained from Baumgardner (Ref. 12). It

should be noted that the expressions in Table 2-2 cannot be applied at the integer values of

s = 2, 3, 4. In order to compute A at these values, the limiting form of Equation (2.39) at

s = 2, 3, 4, respectively, must be taken using L'Hopital's rule. Figure 2-2 provides a

broader perspective of the dependence of A on s and Q.

Table 2-2. Dependence of A on 9.

s A

1 <S<2 3(4-s) 1ru 1lS

(2-s) (3 1-6) rTL

(s-2) (3-s) r

3(4-s) I 4-s

3<cs<4 (s-2)(s-3) 1ru7j

4< s 3(s-4)
I (S-2) (S-3) -

Examination of Table 2-2 shows that the correction factor A is negligible for s > 2

since rL/rU << 1. On the other hand, in the range 1 < s < 2, the variation of A with ru/rL

shows that the correction factor can be several orders of magnitude greater than unity. This

is also indicated in Figure 2-2. Should g(r) vary as r-s with 1 < s < 2, the time constant,

TS, in Equation (2.30) could be reduced by several orders of magnitude, rendering

turbulent shear coagulation a very important consideration since the effective time scale

would be reduced to approximately 1 hour. It is important to note that significant

coagulation effects involving time scales under 1 hour and for particles greater than 1 ;Ln in
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radius have been computed for the large Canadian forest fire of 1950 using Radke's results

in Figure 2-1 (Ref. 7).

1.00E602 - -- - - -- , I T

(Q"t)-a-- -o----O-o

1.OOE -01

1.0060-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 3.0 10.0 15.0 20.0

S (stol ual chss)

Figure 2-2. A as a function of a with 0 as a parameter.

Up to this point, we have only considered the contribution from turbulent
shear coagulation through use of the collection kernel given by Equation (2.2). We now
consider the contribution from turbulent inertial coagulation in Equation (2.3). Using
Equation (2.16), the corresponding parameter, r~i, is given by

T1 1 =BJ J (rl+r 2 ) 2tr21-r22g(rl)g(r 2 )drldr2 , (2.40)

where
A 1k (2.41)
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In contrast to the case for turbulent shear coagulation, the double integration over
rl, r2 is not separable due to the nonanalytic function I r2 - r2- However, it is possible to1 2
obtain a lower bound on TIT in the following way. Consider the integrals I and 12, where

I =f f ( r +r2 ) 2 I r' -r2_Ig(r ) g(r2 ) dr, dr, (2.42)
r1 r2

and

12) f (r 1 +r 2 )2 (r,-r 2 ) 2 g(rl)g(r2 )dr dr2  (2.43)

1 r2

I, appears in Equation (2.40). 12 is similar and has the essential property required of I1,

namely, ensuring that no contribution comes from the domain where r1 r2.

We now show that I1 > 12 . Let

a = Ir2-r21 =(r 1 +r 2 )1r1 -r 21 (2.44)

and

b = (r1 -r2) 2 = (r 1, r2 )(rI r2 ) (2.45)

and consider the difference

a -a2-b2

- (r 1 +r 2 ) 2 (r 1 -r 2 )2 -(r,-r 2 )4  -(r -r 2 )2 4rlr2 > 0. (2.46)

Since a, b are > 0, and a2 > b2, we conclude that a > b. Therefore,
I I > I2 • (2.47)

A lower bound on 1il, defined as 1• is thus given by

11= B12  (2.48)

Use of 1i provides a minimum rate of coagulation by inertia! turbulence. The integration

of 12 yields
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2 1 (2.49)

2

"The ratio 0 = ()/r 4 is deduced from Equation (2.37) to yield

0 )2 5-s (Q3"- 1 ) (2.50)

Table 2-3 shows the dependence of 0 on s for the range of interest rU/rL = Q >> 1, and

Figure 2-3 shows 0 as a function of s with Q as a parameter. It should be noted that the

expressions in Table 2-3 cannot be applied at the integer values of s = 3, 5. At these values

of s, 0 must be computed from Equation (2.50) using L'Hopital's rule.

Table 2-3. Dependence of 9 on s.

s 0

1 <s<3 (-s2 (•fUr")___ ___ __ (3-) 2 \ !U

3<s5 -8- r Lt 5 -"

(s-3) X 'U/
5<s .-52

____ (.-3) 2

Since the anticipated range of interest is from s = 3 to s =5 and for Q >> 1, we

conclude from both Table 2-3 and Figure 2-3 that 0 can be neglected in comparison to unity

and thus use the approximation

-2 (5 (2.51)
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Figure 2-3. 0 as a function of a with 0 as a parameter.

Using the results from Table 2-2 and neglecting the contribution from A for s > 2

provide a comparison of the relative contribution for shear and inertial coagulation. For
s > 2, we have

is = 2.6,cl k(2.52)

and • 4•P_ - -1]-
-4x r (2.53)

1 9 PA tk k

and the ratio il/hIS is given by

I= (0.54) (_-) (f-A) rL ((2.54)

In the subsequent calculations, we use p = 1 g cm- 3 for the aerosol particles, and

PA = 10-3 g cm-3. There is dramatic variation of TI/T1s as a function of s. This quantity

19



can vary over several orders of magnitude, depending on the ratio ru/rL (as long as
r/rL >> 1). For example, when 2 < s < 4, Equation (2.54) reduces to

TII (4-s) rUI - (5 -s) X (2.55)

while for s > 5 we have

II = (540) (s4) rL (2.56)

The ratio between Equations (2.55) and (2.56) is approximately given by ru/rL, which may

range several orders of magnitude (e.g., ru/rL = 104 in Figure 2-1).

It is interesting to examine TI/1 in the range 2 < s < 4 for a representative large

value of dissipation rate. Using the value Ak = 4 x 10-2 cm from Table 2-1, corresponding

to e 2000, and ru = 2 x 10-2 and the value s = 3 deduced from Figure 2-1 gives

Ti* _(540)

1S- 4 135 (2.57)

If TI; were to be used in the formalism of Equations (2.28) to (2.30), the time constant

would be Tj instead of Ts and would be given by

T s 2.9x 10= 2.1 x 103 s = 35 min (2.58)TI= -35 135

The results show that inertial coagulation is the dominant mechanism for particle

frequency functions that contain a substantial fraction of particles greater than 1 pin. This
conclusion is also consistent with the general observations made by Pruppacher and Klett

(Ref. 9).
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SECTION 3
APPLICATION TO KOF

The purpose of this section is to examine the geometric boundary(ies) of KOF

where turbulent coagulation no longer contributes to the aging of aerosols. When

combined with the results of other aerosol mass changing processes, this analysis will

contribute to defining the overall spatial region(s) of KOF where aerosols no longer

experience mass changing. These are the only regions where it is meaningful to compare
the concentration prediction capability of current-generation particle transport codes (which

do not include aging effects) to experimental results.

Figure 3-1 depicts the KOF plume behavior for turbulent coagulation consid-

erations. This figure portrays three individual plumes merging into a superplume. The

actual KOF aerosol problem is one in which the particle concentration of a superplume is

forged by the merging of hundreds of individual plumes.

flame emere frm eac indiidua wellusin.ethe ocgnta.tio/ms dnstwllb

M* A am 0m

Feom ure 3il1o ausetrby viewspoeint torbucoagulatind cgltonsidertions. y w
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propose that the coagulation process becomes insignificant due to decreasing particle

concentrations. The surfaces that define this transition are labeled "Coagulation

Boundary." The shaded areas beyond these boundaries are the regions where coagulation

is assumed to be insignificant.

Figure 3-1 suggests the possibility that the merging plumes may again produce

conditions for coagulation; hence, another Coagulation Boundary is shown in the

superplume. However, Sykes (Ref. 13) has questioned the possibility of a secondary

coagulation boundary for the merged plumes on the grounds that this could not occur
without some mechanism for concentrating particles locally. This issue will be resolved
when detailed and reliable data are available from the field experiment.

The specific objective of this section is to develop a mathematical model for

predicting the downwind aerosol density for either an individual fire or a merged plume

and, from this model, to determine the Coagulation Boundaries shown in Figure 3-1. The

analytical model is developed by combining the turbulent coagulation kinetics described in
Section 2 with particle transport and incorporating advection and turbulent diffusion.

In Section 2, we showed that the aerosol concentration for a spatially uniform
medium is given by

i)N 1N2 n(t)(31•t -- • '(3.1)

where ij(t) can be written as

11(t) = f f K[ml(rl),m2(r2)] g(r, t) g(r2, t) drldr2 (3.2)
r) 1 2

Equation (3.2) is the same as Equation (2.16) but is now written in terms of the radius

variables. Summarizing the results from Section 2, we have the following for turbulent

shear coagulation:

T1s = 2.6 'k Ir 3 (1 + A) , (3.3)

where

A =32 F/r (3.4)
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For turbulent inertial coagulation, we have

• 4nr P 4

71 -- 9 P 1 (1-0) , (3.5)

where

0 r4 (3.6)

It should be noted that Equation (3.3) is a restatement of Equation (2.21) and

Equation (3.5) is a restatement of Equation (2.48) using the exact expression of 12 of
Equation (2.49) instead of neglecting 0.

As indicated in Equations (3.3) to (3.6), a knowledge of the first four moments of

g(r, t), , r2, r3, and r4, precisely determines the time evolution of the aerosol density. It

should be stressed that these quantities apply to any functional form of g(r, t). Thus, any

measurements of aerosol properties that could furnish information regarding the first four

moments would be sufficient to determine the aerosol dynamics. The situation becomes

simplified, somewhat, when we have further knowledge of A and 0.

Although it is not explicitly stated, Equation (3.1) applies to the case in which an

initial number of particles, No, are inserted into the system at time t = 0. The concentration

at subsequent times is given by

No
N=T-+No,/2 (3.7)

where
t

f ' d" (3.8)
0

Equations (3.7) and (3.8) are deceptively simple because they assume a knowledge

of g(r, t). As we mentioned at the outset of Section 2, g(r, t) cannot be determined without

solving the entire problem. However, estimates of the significant times scales involved in

the coagulation process can be obtained by using approximate forms of g(r, t) or real-time

measurements of g(r, t). It is through the latter that we consider turbulent coagulation in

the context of the KOF.
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In the remainder of this section, we will calculate the aerosol concentration as the
particles emerge from a single well. The mathematical model developed for this case is
directly applicable to the superplume, with the appropriate change of coordinates.

When the small-scale turbulent fluctuations are averaged out, the Eulerian equation
for the aerosols is given by the extension of Equation (2.6) to now include convection.
We have

+ V. [U1f(m)] 2 Jf J K(ml, m2 ) f(m1 ) f(m2 )8(m ml-m 2 )dmldm2
mI m2

- f(m) fK(m, mi2 ) f(m2 ) dm 2  (3.9)
m2

where U is the average velocity and V is the gradient operator. The right-hand side of
Equation (3.9) is the same as that of Equation (2.6). For brevity, we have suppressed the
explicit dependence of f on the space variable, V, and on time, t. For example, f(m) is
really f(m, X t).

For an individual plume, Equation (3.9) is solved by matching the solution to the
source emission at the origin (location of the burning well). If the source emission does
not vary with time, Equation (3.9) will also be time invariant and, hence,

af(mmi, t)&- 0 (3.10)at

The space dependence of f(m), V is found by constructing a simplified geometric

model of the plume as shown in Figure 3-2. In this figure, we approximate the plume as a

tube of variable cross section, A(q), in which all the particles move with average velocity,

U, normal to the surface, A. The concentration is assumed to be uniform across the area.
The coordinate system is constructed so that the q-axis is always directed along the
direction of 1j. If I V I is the magnitude of U along the q-axis, the divergence term in
Equation (3.9) becomes

V .[t'f(m, )] - [U(q) f(m, q)] (3.11)
aq

since, by construction, f(m, q) does not vary in directions normal to q.

We now let

f(m, q) = N(q) 0(m, q) (3.12)

where N(q) is the aerosol concentration (cm- 3) and 0(m, q) is the NMDF (expressed as a

function of the space coordinate, q, instead of a function of time).
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Figure 3-2. Model for Individual plume.

Using Equations (3.10) and (3.11) in Equation (3.9) and then integrating over mass

space using the techniques developed in Section 2 gives

(ANU) - UTq) ' (3.13)

where the q-dependent time "constant," T(q), is given by
2

T(q) 2 N(q) T(q) (3.14)

and

Tr(q) = f f2K[ml(rl) m2(r 2 )] g(r 1,q) g(r 2 ,q) drldr2 " (3.15)

The expressions for T1 corresponding to turbulent shear and turbulent inertial coagulation

are given by Equations (3.3) and (3.5), respectively. As in Section 2, we have also

introduced an NPRF, g(r, q), through the transformation

*(m, q) dq = g(r, q) dr (3.16)

Further simplification is possible by using the conservation of mass. Multiplying

Equation (3.9) by m and then integrating over mass space and area gives
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S(U(q) M(q) A(q)) = 0 , (3.17)

where M(q) is the mass per cm 3. Equation (3.17) is analogous to Equation (2.10). UMA

is the total mass emission rate (g s- 1) from a burning well, and as long as the flux tube of
Figure 3-2 encompasses all the mass, we must have the equality

U(q) M(q) A(q) = Rm , (3.18)

where Rm is the mass emission rate from the well expressed in g s- 1.

The next step in determining N(q) is to evaluate A(q). We assume a circular plume

with radius, Ro, and area,

A(q)= Ro(q) (3.19)

Ro is approximated by the equation

t

S= D(t')d' , (3.20)
0

where D is the turbulent diffusion constant evaluated along the path. Following basic

theoretical arguments discussed by Tennekes and Lumley (Ref. 14), we assume the

relationship
D(t) - Ro(t) U(t) ,(3.21)

which applies for times long enough for many independent eddies to establish fully

developed turbulence.

With this assumption, Equation (3.20) can be written as a precise equation:

D=aRU , (3.22)

where "a" is an experimentally deduced constant, as yet undetermined. Inserting

Equation (3.21) into Equation (3.20) and differentiating the latter gives

d0T - aU(t) (3.23)

dt

Integrating Equation (3.23) along the path yields
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t

Ro(q) = a j U(t) dt = a q (3.24)
0

For the turbulent diffusion case considered, the radius of the plume is observed to be

proportional to the distance traveled.2

In the regions described by Equation (3.21), it is recognized that Equation (3.24) is

an approximation since the diffusion rates for horizontal and vertical diffusion are different.

For the KOF, it has been observed that the plumes are typically constrained between 1 and

3 km in thickness. When the top of plume slows its rise and stabilizes from the initial

buoyancy effect, the path variable q can be replaced by the horizontal axis in the direction

of flow, x; the vertical dimension can be replaced by a constant value, Ah = 2 km; and the

horizontal dimension normal to the flow can be allowed to grow at a turbulent diffusion rate

given by

y=bx , (3.25)

where b is another experimentally deduced quantity. If it is desired, the approximation for

A(q) could be improved by using real-time KOF experimental data.

However, until such KOF experimental data become available, we will use the

circular model described by Equation (3.24) with the constant "a" determined from

previous experimental data. Figure 3-3 shows the horizontal mean cloud half-width,

yy(x), for a stack plume as a function of downwind distance, x, from the source (Refs. 15,

16). Lines A through F correspond to different levels of stability. Taking the "average" of

the curves gives the approximate relationship

Oy = 0.1 x (3.26)

Identifying the ay and x of Equation (3.26) with the Re and q, respectively, of

Equation (3.24) gives

R(q) = 0.1 q (3.27)

and

A(q) = xR2 = 3.14 x 1072q2 cm2 (3.28)

2 L. Sykes (Rf. 13) has pointed out that the linear behavior of Equation (3.24) is an "early time" result
but may well extend to dimensions near global scales. For very long transport times, the horizontal
growth will vary with the square root of the distance.
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during the initial stages of plume growth from the burning well. For numerical simplicity,
the path length can be measured in kilometers instead of centimeters. We therefore write
q = 105 qk, where qk is the distance in kilometers from the source, and use the equation

A(q) - 3.14 x 108 q (3.29)

lAM

E

1.W

Li IU

DISTANCE DOWNWIND, Ian
Figure 3-3. Horizontal mean cloud half-width cy(X) for stack plumes

as a function of downwind distance from the source
(Source: Ref. 16).

We now write U = 28 Uw, where Uw is the windspeed in km/hr, and insert
Equation (3.29) into Equation (3.18) to obtain

-10-]
(1.14) x10 Rm (3.30)

Uwqk2

At this point, it is interesting to estimate the mass densities calculated from
Equation (3.30) for an "average" burning well and compare them with the values used by
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Porch (Ref. 7). If RM is the aerosol emission rate for all the burning wells and W is the

total number of burning wells, then the average mass emission rate per well, Rm, is

Pm - RM/W g s- (3.31)

We do not currently have information regarding the maximum emission rates for the

largest individual fires, and there appears to be some uncertainty regarding both the total

emission rate, RM, and the average emission rate. Bauer (Ref. 1) has estimated RM to be

45,000 metric tons per day, while Hobbs and Radke (Ref. 5) have estimated RM to be

3,400 metric tons per day. However, it is not clear whether these numbers apply to the

same number of burning wells and other similar conditions. For lack of more complete

information, we take the average of the two references and use an emission rate of 24,000

metric tons per day, which converts to RM = 2.8 x 105 g s-1. If we assume that 300 wells

are burning,3 the average emission rate per well is

= 2.8 x 105 g _- 3 s(1
Rm 300 =930 . (3.32)

We may anticipate that all wells will not be burning at the same rate and that some wells

may have an emission rate far exceeding that given by Equation (3.32).

In order to examine a hypothetical "worst-case" scenario, we use a value of

em =9 .3 x 10 g s-I in the calculations, which is an order of magnitude higher than the

average of Equation (3.32). At a distance of 1 kilometer from the well (qk = 1), with a

windspeed of 10 km/hr (Uw = 10) and well emission rate Rm = R* = 9.3 x 103 g s 1 ,the

mass density, M, equals 1.06 x 10--7 g cm-3 , which is a factor of 2.12 higher than the

maximum value of 5 x 10-8 g cm-3 used by Porch (Ref. 7). For the same values of qk and

Uw, but with Rm = Rm = 930 g s-1, = 1.06 x 10-8 g cm-3 , which is consistent with

Porch's (Ref. 7) range of interest, 5 x 10-9 to 5 x 10-8 g cm- 3. Using Uw = 10,

Rm = RI, but this time using qk = 10, gives M = 1.06 x 10-4 g cm- 3, which is a factor of

4.7 lower than Porch's (Ref. 7) minimum of 5 x 10-9 g cm- 3 . The net result of this

discussion is the reassuring observation that the values of Mi calculated for a realistic range

of conditions are consistent with the values previously considered in a large forest fire.

We now return to the main thrust of this section, which is the determination of

aerosol density, N(q), from Equation (3.13). Using the result

3 In the May/June 1991 time period, it is estimated that between 500-600 wells were burning.
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4xpN(q) i(q) =-3 N(q) r3(q) (3.33)

in Equation (3.18) gives
3Rm

N(q) =- - (3.34)
4xp r3 AU (.4

Substituting Equation (3.34), in conjunction with the expressions for ri(q) obtained

from Equations (3.3) and (3.5), respectively, in Equation (3.14) gives the following

expressions for T(q) for turbulent shear (TS) coagulation and turbulent inertial (TI)

coagulation:

8gp AU ck

Ts(q) = 7 .8 Rmfs ' (3.35)

where

fs=i+A , (3.36)

and
6pA gkLAU

Ti(q)f Rm r6 , (3.37)

where

rI= - (3.38)
r3

Using either of the expressions Ts(q) or TI(q) for T(q) in Equation (3.13) yields the

density along the path. Solving Equation (3.13) for "ANU" gives
I-(AoNoUo)

N) U = A-' (3.39)

where
-A(q)

FC = e (3.40)

and
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q

Uq') d(q' (3.41)f~) U(qJ T(qJ

The initial values A0 , No, and Uo are taken at the location qo, where the
approximation of Equation (3.27) is valid or, equivalently, where the initial jetting action

and buoyancy effects of the well are dissipated. That is, our turbulent diffusion model only

considers those effects attributed to usual atmospheric processes.

For the purposes of this analysis, we must make an assumption about the way

U(qA), and T(q*) are treated in the integration of Equation (3.41). Until experimental data

become available, we approximate these quantities as "path-averaged" constants. On the
other hand, we do include the variation of A(q) from Equation (3.27). The results for
turbulent shear (S) coagulation and turbulent inertial (I) coagulation are as follows:

is s
As = s- Is (3.42)

where

10 Rm fs
1 U2 kp P (3.43)

and
1x i

A, 1  , (3.44)
I qO q'

where

5.3 Rm ri (3.45)
II fiP A k k U2 ( .5

In the absence of coagulation, the spatial distribution of density is given by

Ao No Uo
NI(q) f U(q) A(q) (3.46)

This spreading behavior of the plume is attributed to atmospheric diffusion. NI(q) can be
estimated from the mass ejection using the equation

H=i N (3.47)
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in Equation (3.18). The result is

Rm
N (q) = -iU(q)A(q) (3.48)

N1 (q) is the particle density that would exist in the absence of coagulation. Since rc : 1,

coagulation reduces the aerosol concentration beyond ordinary geometric dilution. Coagu-
lation is quantitatively manifested by the parameters Is or i1, which pertain to turbulent
shear coagulation and turbulent inertial coagulation, respectively. If we temporarily let

1 = Is or I1, then the coagulation contribution to density can be written as

1 exP- [ (//%-/q) ] , (3.49)

which is observed to be less than or equal to unity for the prescribed range q > qo. The

density at qO is
Rm

N(%)= N 1 (%) == U (%) A(q%) (3.50)

It is difficult to theoretically predict qo since the processes describing the aerosol
behavior as the oil emerges from the well are extremely complex. However, estimates of
qo can be obtained from visual observations. While a knowledge of qo is required for
detmnining the absolute level of aerosol concentration for q > qo, it does not appear to be a
critical factor in determining whether to consider coagulation effects when interpreting
transport behavior. What is important is the spatial variation of Tc as a function of q when

compared to other transport processes.

It is now worthwhile to examine certain features of N(q), including predictions of
aerosol density close to the source and the apparent limiting effects of coagulation. Based
on crude visual interpretations of the KOF photographs, we estimate the initiation of
"conventional" atmospheric diffusion processes to begin between 0.1 and 1.0 kilometers
from an individual burning well. For orientation, we compute Nl(qo) at qo = 105 cm
(1 km) for a windspeed Uw = 10 km hr-1 , for Rm = Rm, and for the average mass,

Hi = ii 4p /3= 6.7 x I0C"g ], as determined from the size distribution defined

by Equation (A.6) of the Appendix. Inserting these values in Equation (3.48) gives N1 (at
I kin) = 1.6 x 105 particles per cm3. This value of density appears to be consistent with

the results of Hobbs and Radke (Ref. 5) at close-in ranges.
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As a matter of theoretical interest, it is worthwhile to examine the behavior of

aerosol density as a function of emission rate, Rm. By the way of example, we evaluate

the asymptotic behavior of N(q). In the limit where q >> I and q > qo, the coagulation

function rc approaches the constant e = exp (-l/qo). From Equations (3.43) and (3.45),

we note that both Is and 1I are proportional to Rm. Therefore,

1 = a Rm, (3.51)

where a is the proportionality constant [for example, a = (5.3 ri/pArkXkU 2) in the case of

turbulent inertial coagulation]. Substituting Equation (3.51) into ec yields the following

result for the asymptotic behavior.( Rm)
Nas= U(q)A(q) exp[-Rm0A] , (3.52)

where

=qo/a (3.53)

Keeping all other factors the same, Nas has a maximum with respect to Rm. This

maximum results from the competing factors of increased emission and reduction by

coagulation. Nas maximizes at Rm = 1, with the maximum value given by

= (0.37) X4

As we indicated earlier, the main issue regarding the relevance of turbulent

coagulation is to examine its effect on the interpretation of transport behavior. More

specifically, we want to ensure that N(q) does not change appreciably due to turbulent

coagulation over distances that are significant in the interpretation of transport. This means
that we would like the function rc to remain essentially constant. This condition is

examined most easily by plotting rc as a function of q with qo and I as parameters.

To obtain an estimate of values of I that are of interest, we calculate Is and lI for the

following set of parameters4 :

Rm =-Rm= 9.3x 10 gs (a)

p = mcm 3  (b)

4 Improved values for these parameters win be available when the masured KOF data are consolidated.
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U = 278cm s-' (U=0 km h') (c)

fS =1 (d)

T = 4.6 x10- s (fore = 8,000 cm 2 s-3) (e)

Xk = 2.8x10- 2 cm (for e = 8,000 cm 2 s73 ) (f)

PA = 1073 gcm-3 (g)

r, = 1072 cm (h) (3.55)

Inserting these values into Equations (3.43) and (3.45) gives

Is =2.6m (3.56)

and

l1 =0.49km . (3.57)

For the conditions of Equation (3.55), the small value of Is indicates that turbulent

shear coagulation will not be a factor in transport since Fc is essentially constant at " -- 1

for all values of q of interest. Moreover, it is hard to imagine a set of realistic parameters

that could change the foregoing conclusion.

On the other hand, Equation (3.57) shows that 11 is in the kilometer range.

Considering the approximations and the unknown factors that have gone into the
calculation of 1I, it is not inconceivable that 1I could be as high as 10 km under some set of

circumstances. This could have an impact on the selection and interpretation of data used

for transport predictions. Turbulent coagulation will have an effect on the prediction and

interpretation of concentration if Ic varies significantly over the range of interest.

The precise criterion about what constitutes an acceptable degree of spatial variation

remains to be defined for the Kuwaiti Oil Fire Field Experiment (KOFFE). From the

analytical form of rc [Equation 3.49)], there will be some minimum value of q, defined as

qmin, beyond which variations of rc with q will be very small. Moreover, since the

dependence of rc on q0 only affects the magnitude of concentration through the factor

exp[--/qo], it follows that qmin will depend only on 1.
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John Cockayne (Ref. 17) has suggested a possible criterion for determining qmin.

Cockayne's criterion is that turbulent coagulation will not be important in the range
q a qmin if we have the condition

> (mn 0.9 (3.58)rc~qmmn)

where qmin is the distance beyond which In Tc changes by less than 10 percent over qmin.

Using Equation (3.49) in Equation (3.58), we easily deduce

1. 1 >t • / = I +/1/2 qmin '(3.59)

which leads to the result
qmmn 2 5 1 (3.60)

Thus, if I = lI = 0.49 km is used from Equation (3.57), we have qmin = 2.45 km.

This value of qmn indicates that turbulent inertial coagulation ceases to be important for the

average single well only 2.45 km downstream. On the other hand, if !1 is on the order of

10 km, then turbulent inertial coagulation could be very important at the formation of the

superplume.

In the analytical model of this study, we have reduced the dependence of the spatial

variation of turbulent coagulation to the two parameters qD and Ii. Recognizing that there is

some uncertainty in the numerical values of these quantities, it is instructive to visually
examine the dependence of rc(q) on qo and Ii. This will provide a preliminary indication of

the range of values for qo and l1 that may be important in assessment of transport issues.

The results are shown in Figures 3-4 and 3-5. All of these curves begin at q = qo.

Figure 3-4 shows the behavior of rc as a function of q for assumed values of

qo = 0.1 km and lI = 0.01, 0.1, and 1.0 km, respectively. As predicted, increasing the

value of ii for a fixed value of qo leads to increasing reduction of the asymptotic value of

rF. When (ll/qo) = 10, the asymptotic value of rc is less than 10-4 of its initial value. The

case for qo = 0.1 and lj - 10.0 is not shown because the excessive reduction in aerosol

density for this set of values diminishes interest in this calculation.

Figure 3-5 shows the behavior of rc as a function of q for assumed values of

qo = 1.0 km and 1I = 0.1, 1.0, and 10.0 kin. These results scale similarly to those in

Figure 3-4 since the ratios of li/qo are the same in each case. In addition, the respective
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asymptotic values of rc = exp - [ld/qo] are also equal. However, as shown in the latter set,

the scale is stretched out and leads to significant changes in density extending into the tens-

of-kilometers range.
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Figure 3-4. r. as a function of q for qO = 0.1 km with / as a parameter.
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Figure 3-5. r. as a function of q for qO = 1.0 km with A as a parameter.
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SECTION 4

CONCLUSION

In this paper, we focus on the KOF of 1991 to investigate one of several possible

mass-changing processes that can limit the applicability of the current generation of

transport codes, i.e., turbulent coagulation. The purpose of this paper is to make a

preliminary assessment of the conditions where turbulent coagulation is or is not an

important factor. Clearly, if airborne particles continue to coagulate in appreciable amounts

during the transport phase, they cannot be unequivocally "tagged," and this potentially

diminishes the validity of a transport calculation.

The approach is to develop an analytical formulation of the spatial behavior of

aerosol density as the particles are carried along the turbulent wind field while

simultaneously undergoing coagulation. Using approximations for the shape of the aerosol

radial size distribution based on the large Canadian forest fire of 1950, we have been able

to compute the time and space behavior of aerosol density for turbulent shear coagulation

and turbulent inertial coagulation. The latter is nearly two orders of magnitude more

effective than the former for the conditions of the KOF.

For a single source, the analysis shows that the upstream density can be written as

N = NIN2, where N1 is that part due to ordinary atmospheric transport processes and N2 is

that part attributed to coagulation. N2 depends on the source of emission, windspeed,

atmospheric turbulence, and the characteristics of the coagulation process and behaves as

exp(-W/q), where 1I is the characteristic dimension associated with coagulation and q is the

upstream distance.

Using approximate numbers for the conditions of the KOF, l1 can range up to

several kilometers and, in some cases, may be as large as 10 km. However, in the

computation, there are a large number of unknown factors that can be determined from the

experimental data. More accurate data would improve the estimate of the coagulation

distance and, hence, define more precisely the regions where a self-consistent set of

measurements can be integrated with valid transport models.

37



The theoretical models for the turbulent collection kernels are based on spherical
shapes for the aerosol particles. In oil fires, however, the soot particles are usually not
spherical but are more strand-like. Perhaps these particles can be better described using the

theory of fractals.

Preliminary evaluation suggests that strand-like particles tend to interact more
aggressively. In turn, this interaction would lead to a larger collection kernel that would
manifest itself in a large l1 and would make turbulent coagulation an important factor in
defining the spatial regions where transport codes can be compared with theoretical models.

Improvements to this initial theory should include fractal considerations and
improved approximations for the aerosol size distribution function, turbulence levels,
inhomogeneities within the plume, and collection efficiency.
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APPENDIX
CALCULATION OF MOMENTS OF NORMALIZED

PARTICLE RADIUS FUNCTION WHEN s = 3

When ru >> rL, the normalizing constant, A, is given by the approximation
A = (s - 1) (A.1)

For s =3, we obtain
A 2 r2  (A.2)

L

and, hence,

2

g(r)_ L2 (A.3)

Using the fact that rU >> rL gives the following results for the first four moments:
ru

rFA J •=2rL (A.4)

rL

2 fd~ r rL in •L(A.5)

ru

2L

rL

TU

r3 =A r dr 2 r 2r (.6i L U(A)
rL

The values of rL =2 x 1O-6 cm and rU =2 x 10-2 cm are used in all of the

calculations.
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